Muscle tone facilitation and inhibition after orexin-a (hypocretin-1) microinjections into the medial medulla.
نویسندگان
چکیده
Orexins/hypocretins are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. A loss of hypocretin neurons has been found in human narcolepsy, which is characterized by sudden loss of muscle tone, called cataplexy, and sleepiness. The normal functional role of these neurons, however, is unclear. The medioventral medullary region, including gigantocellular reticular nucleus, alpha (GiA) and ventral (GiV) parts, participates in the induction of locomotion and muscle tone facilitation in decerebrate animals and receives moderate orexinergic innervation. In the present study, we have examined the role of orexin-A (OX-A) in muscle tone control using microinjections (50 microM, 0.3 microl) into the GiA and GiV sites in decerebrate rats. OX-A microinjections into GiA sites, previously identified by electrical stimulation as facilitating hindlimb muscle tone bilaterally, produced a bilateral increase of muscle tone in the same muscles. Bilateral lidocaine microinjections (4%, 0.3 microl) into the dorsolateral mesopontine reticular formation decreased muscle rigidity and blocked muscle tone facilitation produced by OX-A microinjections into the GiA sites. The activity of cells related to muscle rigidity, located in the pedunculopontine tegmental nucleus and adjacent reticular formation, was correlated positively with the extent of hindlimb muscle tone facilitation after medullary OX-A microinjections. OX-A microinjections into GiV sites were less effective in muscle tone facilitation, although these sites produced a muscle tone increase during electrical stimulation. In contrast, OX-A microinjections into the gigantocellular nucleus (Gi) sites and dorsal paragigantocellular nucleus (DPGi) sites, previously identified by electrical stimulation as inhibitory points, produced bilateral hindlimb muscle atonia. We propose that the medioventral medullary region is one of the brain stem target for OX-A modulation of muscle tone. Facilitation of muscle tone after OX-A microinjections into this region is linked to activation of intrinsic reticular cells, causing excitation of midbrain and pontine neurons participating in muscle tone facilitation through an ascending pathway. Moreover, our results suggest that OX-A may also regulate the activity of medullary neurons participating in muscle tone suppression. Loss of OX function may, therefore, disturb both muscle tone facilitatory and inhibitory processes at the medullary level.
منابع مشابه
Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area.
Orexin-A (OX-A) and orexin-B (OX-B) (hypocretin 1 and hypocretin 2) are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. The locus coeruleus (LC) receives the densest extrahypothalamic projections of the orexin (OX) system. Recent evidence suggests that descending projections of the LC have a facilitatory role in the regulation of muscle tone. The po...
متن کاملAdministration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat
Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). Materials and...
متن کاملAtonia-related regions in the rodent pons and medulla.
Electrical stimulation of circumscribed areas of the pontine and medullary reticular formation inhibits muscle tone in cats. In this report, we present an analysis of the anatomical distribution of atonia-inducing stimulation sites in the brain stem of the rat. Muscle atonia could be elicited by electrical stimulation of the nuclei reticularis pontis oralis and caudalis in the pons as well as t...
متن کاملAdministration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat
OBJECTIVES Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). MATERIALS AND ...
متن کاملCorticotropin-releasing factor mediated muscle atonia in pons and medulla.
The dorsolateral pontine inhibitory area (PIA) and medial medullary reticular formation (MMRF) have been found to mediate the muscle atonia of REM sleep. Our previous studies have shown that acetylcholine (ACh) microinjection in the PIA and in the nucleus paramedianus of the medial medulla produces muscle atonia. Glutamate microinjection in both PIA and nucleus magnocellularis (NMC) of the medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2002